Những câu hỏi liên quan
lê phan quỳnh anh
Xem chi tiết
emily
Xem chi tiết
Trần Hạnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2023 lúc 15:29

loading...

Bình luận (0)
toán khó mới hay
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2023 lúc 15:29

loading...

Bình luận (0)
Thiên Vũ Ngọc
Xem chi tiết
Ngô Quang Sáng
Xem chi tiết
Agatsuma Zenitsu
23 tháng 1 2020 lúc 21:16

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

Bình luận (0)
 Khách vãng lai đã xóa
Ngô Quang Sáng
24 tháng 1 2020 lúc 10:11

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy

Bình luận (0)
 Khách vãng lai đã xóa
Agatsuma Zenitsu
24 tháng 1 2020 lúc 10:23

Đúng rồi bạn. Phụ nhau ý nghĩa là ^HBD + ^ACB = 90^0 và tương tự như góc kia. (Tam giác vuông ý)

Bình luận (0)
 Khách vãng lai đã xóa
SY NGUYEN
Xem chi tiết
Lee Hieu
Xem chi tiết
mokona
21 tháng 1 2016 lúc 1:28

ko làm đc! tui mới lớp 6 thui

Bình luận (0)
Nguyễn Lê Phước Thịnh
14 tháng 4 2023 lúc 15:29

loading...

Bình luận (0)
Kiện So Cute :3
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 23:35

a: Xét (O) có

ΔABK nội tiếp đường tròn

AK là đường kính

Do đó: ΔABK vuông tại B

Xét (O) có

ΔACK nội tiếp đường tròn

AK là đường kính

Do đó: ΔACK vuông tại C

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

Bình luận (0)